Multigrid methods with Powell-Sabin splines

نویسندگان

  • Hendrik Speleers
  • Paul Dierckx
  • Stefan Vandewalle
چکیده

We present a multigrid algorithm for the solution of the linear systems that arise from a finite element discretization of second order elliptic partial differential equations with Powell-Sabin splines. We show that the method yields a uniform convergence independent of the mesh size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer aided geometric design with Powell-Sabin splines

Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...

متن کامل

Isogeometric analysis with Powell-Sabin splines

This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...

متن کامل

On the graphical display of Powell-Sabin splines: a comparison of three piecewise linear approximations

Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on arbitrary triangulations. They admit a compact representation in a normalized B-spline basis with a geometric interpretation involving control triangles. This paper discusses several piecewise linear approximations for the graphical display of PowellSabin splines. We analyse their approximation error to the spline ...

متن کامل

On the Lp-stability of quasi-hierarchical Powell-Sabin B-splines

Quasi-hierarchical Powell-Sabin splines are C-continuous quadratic splines defined on a locally refined hierarchical triangulation. They admit a compact representation in a normalized B-spline basis. We prove that the quasi-hierarchical basis is in general weakly Lpstable, but for a broad class of hierarchical triangulations it is even strongly Lp-stable.

متن کامل

Numerical solution of partial differential equations with Powell-Sabin splines

Powell-Sabin splines are piecewise quadratic polynomials with global C-continuity. They are defined on conformal triangulations of two-dimensional domains, and admit a compact representation in a normalized B-spline basis. Recently, these splines have been used successfully in the area of computer-aided geometric design for the modelling and fitting of surfaces. In this paper, we discuss the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007